Научно-исследовательский институт гигиены, токсикологии, эпидемиологии, вирусологии и микробиологии РЦГЭиОЗ

Секция «Мониторинг факторов среды обитания человека и методы аналитического лабораторного контроля»

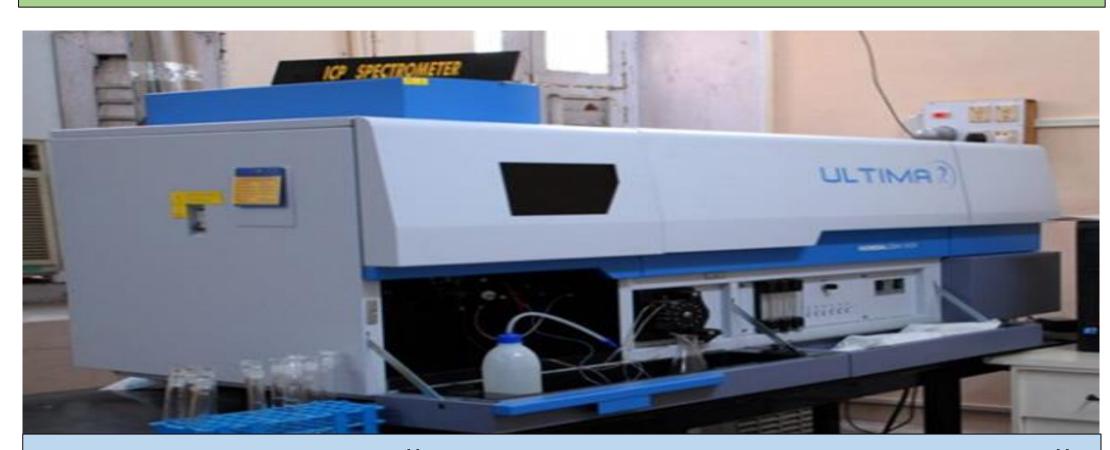
Разработка спектрометрического способа определения массовой концентрации свинца и кадмия в пищевых добавках из группы регуляторов кислотности

Дребенкова И.В., Кузовкова А.А.

Цель работы — разработка способа определения массовой концентрации токсичных элементов свинца и кадмия в пищевых добавках группы регуляторы кислотности методом атомно-эмиссионной спектрометрии

Объекты исследования – пищевые добавки группы регуляторы кислотности

Метод исследования — атомно-эмиссионная спектрометрия с индуктивно-связанной плазмой (АЭС-ИСП)



Принцип метода АЭС-ИСП — измерение интенсивности излучения атомов определяемых элементов, возникающего при распылении анализируемой пробы в аргоновую плазму, индуктивно возбуждаемую радиочастотным электромагнитным полем

Пробоподготовка пищевых добавок группы регуляторы кислотности – микроволновая минерализация

Задание 02.19 «Разработать и внедрить методику измерений массовой концентрации свинца и кадмия пищевых добавках ароматизаторах атомной И методом подпрограммы «Безопасность спектрометрии» среды обитания человека» ГНТП «Научно-техническое обеспечение качества и доступности медицинских услуг»

Актуальность – отсутствие метрологически аттестованных методик прямого назначения для контроля безопасности пищевых добавок

Атомно-эмиссионный спектрометр с индуктивно-связанной плазмой плазмой ЈҮ 2000-2 (Horiba Yobin Ivon, Франция)

Таблица — Условия работы атомно-эмиссионного спектрометра с индуктивно-связанной плазмой ЈҮ 2000-2

Характеристика	Описание
Спектральный диапазон	120-800 нм
Фокусное расстояние, м	0,64
Спектральное разрешение, пм,	18 (в диапазоне от120 до 320 нм)
не более	10 (в диапазоне от230 до 800 нм)
ОСКО результатов измерений, %, не более	2,0
Оптическая система	Черни - Тернера
Используемый газ	аргон
Программное обеспечение	ICP JY версия 5.4
Мощность генератора (RF-мощность)	1000 Вт
Скорость потока газа в оболочке	0,2 дм³/мин
Скорость распылительного потока в инжекторе	0,66–0,78 дм³/мин
Скорость потока газа плазмы (аргона)	13 дм ³ /мин
Скорость вспомогательного газа	0 дм ³ /мин
Скорость подачи пробы	1,3 cм ³ /мин
Длительность промывки системы ввода проб	15 c
Скорость насоса при анализе образца и промывке после анализа	20,0 об/мин
Высота радиального наблюдения (наблюдение плазмы сбоку)	12 mm

Длины волн детекции, используемые при работе атомно-эмиссионного спектрометра с индуктивно-связанной плазмой ЈҮ 2000-2, нм: Cd - 214, 438; Pb - 220,353

Таблица — Пределы количественного определения (LOQ) токсичных элементов в пищевых добавках группы регуляторы кислотности с использованием атомно-эмиссионного спектрометра с индуктивносвязанной плазмой ЈҮ 2000-2

Элемент	LOQ, Mr/kr
Свинец	0,258
Кадмий	0,013

Предел количественного определения (LOQ) — $10 \, \rm S_{o,}$ где $\rm S_{o}$ — стандартное квадратичное отклонение при измерении сигнала холостого опыта

spectrometric@rspch.by

Разработан спектрометрический способ определения массовой концентрации токсичных элементов свинца и кадмия в пищевых добавках группы регуляторы кислотности